Compassion & Mindfulness Training


Contact Us     Donate     Links    

Citations and Abstracts for Research on Meditation

Complied by Matthew Evrard, Research Associate, Rushing to Yoga Foundation

Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences, 104(27), 11483-11488.
Meditation refers to a family of mental training practices that are designed to familiarize the practitioner with specific types of mental processes. One of the most basic forms of meditation is concentration meditation, in which sustained attention is focused on an object such as a small visual stimulus or the breath. In age-matched participants, using functional MRI, we found that activation in a network of brain regions typically involved in sustained attention showed an inverted u-shaped curve in which expert meditators (EMs) with an average of 19,000 h of practice had more activation than novices, but EMs with an average of 44,000 h had less activation. In response to distracter sounds used to probe the meditation, EMs vs. novices had less brain activation in regions related to discursive thoughts and emotions and more activation in regions related to response inhibition and attention. Correlation with hours of practice suggests possible plasticity in these mechanisms.

Buckner, R. L., Andrews-Hanna, J. R., & Schacter , D. L. (2008). The brain’s default network anatomy, function, and relevance to disease. New York Academy of Sciences, 1124, 1-38.
Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default net- work is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey sup- ports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two sub- systems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease.  

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215-222.
Anterior cingulate cortex (ACC) is a part of the brain’s limbic system. Classically, this region has been related to affect, on the basis of lesion studies in humans and in animals. In the late 1980s, neuroimaging research indicated that ACC was active in many studies of cognition. The findings from EEG studies of a focal area of negativity in scalp electrodes following an error response led to the idea that ACC might be the brain’s error detection and correction device. In this article, these various findings are reviewed in relation to the idea that ACC is a part of a circuit involved in a form of attention that serves to regulate both cognitive and emotional processing. Neuroimaging studies showing that separate areas of ACC are involved in cognition and emotion are discussed and related to results showing that the error negativity is influenced by affect and motivation. In addition, the development of the emotional and cognitive roles of ACC are discussed, and how the success of this regulation in controlling responses might be correlated with cingulate size. Finally, some theories are considered about how the different subdivisions of ACC might interact with other cortical structures as a part of the circuits involved in the regulation of mental and emotional activity.

Corcoran, K. A., Desmond, T. J., Frey, K. A., & Maren, S. (2005). Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. The Journal of Neuroscience, 25(39), 8978 – 8987.
In recent studies, inactivation of the dorsal hippocampus before the retrieval of extinguished fear memories disrupted the context- dependent expression of these memories. In the present experiments, we examined the role of the dorsal hippocampus in the acquisition of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock [unconditional stimulus (US)], rats received an extinction session in which the CS was presented without the US. In experiment 1, infusion of muscimol, a GABAA receptor agonist, into the dorsal hippocampus before the extinction training session decreased the rate of extinction. Moreover, when later tested for fear to the extinguished CS, all rats that had received hippocampal inactivation before extinction training demonstrated renewed fear regard- less of the context in which testing took place. This suggests a role for the dorsal hippocampus in both acquiring the extinction memory and encoding the CS– context relationship that yields the context dependence of extinction. In experiment 2, inactivation of the dorsal hippocampus before testing also disrupted the context dependence of fear to the extinguished CS. In experiment 3, quantitative autoradiography revealed the boundaries of muscimol diffusion after infusion into the dorsal hippocampus. Together, these results reveal that the dorsal hippocampus is involved in the acquisition, contextual encoding, and context-dependent retrieval of fear extinction. Learning and remembering when and where aversive events occur is essential for adaptive emotional regulation.

Craig, A. D. (2009). How do you feel — now? the anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59-70.
The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviors, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

Goldin, P. R., & Gross, J. J. (2010). Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. American Psychological Association, 10(1), 83-91.
Mindfulness-based stress reduction (MBSR) is an established program shown to reduce symptoms of stress, anxiety, and depression. MBSR is believed to alter emotional responding by modifying cognitive– affective processes. Given that social anxiety disorder (SAD) is characterized by emotional and attentional biases as well as distorted negative self-beliefs, we examined MBSR-related changes in the brain–behavior indices of emotional reactivity and regulation of negative self-beliefs in patients with SAD. Sixteen patients underwent functional MRI while reacting to negative self-beliefs and while regulating negative emotions using 2 types of attention deployment emotion regulation— breath-focused attention and distraction-focused attention. Post-MBSR, 14 patients completed neuroimaging assessments. Compared with baseline, MBSR completers showed improvement in anxiety and depression symptoms and self-esteem. During the breath-focused attention task (but not the distraction-focused attention task), they also showed (a) decreased negative emotion experience, (b) reduced amygdala activity, and (c) increased activity in brain regions implicated in attentional deployment. MBSR training in patients with SAD may reduce emotional reactivity while enhancing emotion regulation. These changes might facilitate reduction in SAD-related avoidance behaviors, clinical symptoms, and automatic emotional reactivity to negative self-beliefs in adults with SAD.

Hölzel, B. K., Carmody, J., Evans, K., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11-17.
Stress has significant adverse effects on health and is a risk factor for many illnesses. Neurobiological studies have implicated the amygdala as a brain structure crucial in stress responses. Whereas hyperactive amygdala function is often observed during stress conditions, cross-sectional reports of differences in gray matter structure have been less consistent. We conducted a longitudinal MRI study to investigate the relationship between changes in perceived stress with changes in amygdala gray matter density following a stress-reduction intervention. Stressed but otherwise healthy individuals (N 1⁄4 26) participated in an 8-week mindfulness-based stress reduction intervention. Perceived stress was rated on the perceived stress scale (PSS) and anatomical MR images were acquired pre- and post-intervention. PSS change was used as the predictive regressor for changes in gray matter density within the bilateral amygdalae. Following the intervention, participants reported significantly reduced perceived stress. Reductions in perceived stress correlated positively with decreases in right basolateral amygdala gray matter density. Whereas prior studies found gray matter modifications resulting from acquisition of abstract information, motor and language skills, this study demonstrates that neuroplastic changes are associated with improvements in a psychological state variable.

Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191, 36–43.
Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical magnetic resonance (MR) images from 16 healthy, meditation-naïve participants were obtained before and after they underwent the 8-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared with a waiting list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared with the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.

Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? proposing mechanisms of action from a conceptual and neural perspective. Association for Psychological Science, 6(6), 537-559.
Cultivation of mindfulness, the nonjudgmental awareness of experiences in the present moment, produces beneficial effects on well-being and ameliorates psychiatric and stress-related symptoms. Mindfulness meditation has therefore increasingly been incorporated into psychotherapeutic interventions. Although the number of publications in the field has sharply increased over the last two decades, there is a paucity of theoretical reviews that integrate the existing literature into a comprehensive theoretical framework. In this article, we explore several components through which mindfulness meditation exerts its effects: (a) attention regulation, (b) body awareness, (c) emotion regulation (including reappraisal and exposure, extinction, and reconsolidation), and (d) change in perspective on the self. Recent empirical research, including practitioners’ self-reports and experimental data, provides evidence supporting these mechanisms. Functional and structural neuroimaging studies have begun to explore the neuroscientific processes underlying these components. Evidence suggests that mindfulness practice is associated with neuroplastic changes in the anterior cingulate cortex, insula, temporo-parietal junction, fronto-limbic network, and default mode network structures.The authors suggest that the mechanisms described here work synergistically, establishing a process of enhanced self-regulation. Differentiating between these components seems useful to guide future basic research and to specifically target areas of development in the treatment of psychological disorders. 

Jang, J. H., Jung, H. W., Kang, D. H., Byun, M. S., Kwon, S. J., Choi, C. H., & Kwon, J. S. (2011). Increased default mode network connectivity associated with meditation. Neuroscience Letters, 487, 358–362 .
Areas associated with the default mode network (DMN) are substantially similar to those associated with meditation practice. However, no studies on DMN connectivity during resting states have been conducted on meditation practitioners. It was hypothesized that meditators would show heightened functional connectivity in areas of cortical midline activity. Thirty-five meditation practitioners and 33 healthy controls without meditation experience were included in this study. All subjects received 4.68- min resting state functional scanning runs. The posterior cingulate cortex and medial prefrontal cortex were chosen as seed regions for the DMN map. Meditation practitioners demonstrated greater functional connectivity within the DMN in the medial prefrontal cortex area (x y z = 3 39 −21) than did controls. These results suggest that the long-term practice of meditation may be associated with functional changes in regions related to internalized attention even when meditation is not being practiced.

Kozasa, E. H., Sato, J. R., Lacerda, S. S., Barreiros, M. A., Radvany , J., Russell, T. A., Sanches, L. G., & Mello , L. E. (2012). Meditation training increases brain efficiency in an attention task. Neuroimage, 59(1), 745-749.
Meditation is a mental training, which involves attention and the ability to maintain focus on a particular object. In this study we have applied a specific attentional task to simply measure the performance of the participants with different levels of meditation experience, rather than evaluating meditation practice per se or task performance during meditation. Our objective was to evaluate the performance of regular meditators and non-meditators during an fMRI adapted Stroop Word-Colour Task (SWCT), which requires attention and impulse control, using a block design paradigm. We selected 20 right-handed regular meditators and 19 non- meditators matched for age, years of education and gender. Participants had to choose the colour (red, blue or green) of single words presented visually in three conditions: congruent, neutral and incongruent. Non- meditators showed greater activity than meditators in the right medial frontal, middle temporal, precentral and postcentral gyri and the lentiform nucleus during the incongruent conditions. No regions were more activated in meditators relative to non-meditators in the same comparison. Non-meditators showed an increased pattern of brain activation relative to regular meditators under the same behavioural performance level. This suggests that meditation training improves efficiency, possibly via improved sustained attention and impulse control.

Lazar, S. W., Kerr, C. E., Wassermana, R. H., Gray, J. R., Greved, D. N., Treadway, M. T., McGarvey, M., & Quinn, B. T. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.
Previous research indicates that long-term meditation practice is associated with altered resting electroencephalogram patterns, suggestive of long lasting changes in brain activity. We hypothesized that meditation practice might also be associated with changes in the brain’s physical structure. Magnetic resonance imaging was used to assess cortical thickness in 20 participants with extensive Insight meditation experience, which involves focused attention to internal experiences. Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than matched controls, including the prefrontal cortex and right anterior insula. Between- group differences in prefrontal cortical thickness were most pronounced in older participants, suggesting that meditation might offset age-related cortical thinning. Finally, the thickness of two regions correlated with meditation experience. These data provide the first structural evidence for experience-dependent cortical plasticity associated with meditation practice.

Luders, E., Toga, A. W., Lepore, N., & Gaser, C. (2009). The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. Neuroimage, 45(3), 672–678.
Although the systematic study of meditation is still in its infancy, research has provided evidence for meditation-induced improvements in psychological and physiological well-being. Moreover, meditation practice has been shown not only to benefit higher-order cognitive functions but also to alter brain activity. Nevertheless, little is known about possible links to brain structure. Using high-resolution MRI data of 44 subjects, we set out to examine the underlying anatomical correlates of long-term meditation with different regional specificity (i.e., global, regional, and local). For this purpose, we applied voxel-based morphometry in association with a recently validated automated parcellation approach. We detected significantly larger gray matter volumes in meditators in the right orbito-frontal cortex (as well as in the right thalamus and left inferior temporal gyrus when co-varying for age and/or lowering applied statistical thresholds). In addition, meditators showed significantly larger volumes of the right hippocampus. Both orbito- frontal and hippocampal regions have been implicated in emotional regulation and response control. Thus, larger volumes in these regions might account for meditators’ singular abilities and habits to cultivate positive emotions, retain emotional stability, and engage in mindful behavior. We further suggest that these regional alterations in brain structures constitute part of the underlying neurological correlate of long-term meditation independent of a specific style and practice. Future longitudinal analyses are necessary to establish the presence and direction of a causal link between meditation practice and brain anatomy.

Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163-169.
This article explores initial findings and the implications of neuroscientific research on meditation. Meditation is conceptualized here as a family of complex emotional and attentional regulatory training regimes developed for various ends, including the cultivation of well-being and emotional balance. The review focuses on the mental processes and the underlying neural circuitry that are critically involved in two styles of meditation. One style, Focused Attention (FA) meditation, entails the voluntary focusing of attention on a chosen object. The other style, Open Monitoring (OM) meditation, involves non-reactive monitoring of the content of experience from moment to moment. We discuss the potential regulatory functions of these practices on attention and emotion processes and their putative long-term impact on the brain and behavior. Maguire, E. A., Gadian, D. G., Johnsrude, I. S.,

Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398 – 4403.
Structural MRIs of the brains of humans with extensive navigation experience, licensed London taxi drivers, were analyzed and com- pared with those of control subjects who did not drive taxis. The posterior hippocampi of taxi drivers were significantly larger relative to those of control subjects. A more anterior hippocampal region was larger in control subjects than in taxi drivers. Hippocam- pal volume correlated with the amount of time spent as a taxi driver (positively in the posterior and negatively in the anterior hippocampus). These data are in accordance with the idea that the posterior hippocampus stores a spatial representation of the en- vironment and can expand regionally to accommodate elaboration of this representation in people with a high dependence on navigational skills. It seems that there is a capacity for local plastic change in the structure of the healthy adult human brain in response to environmental demands.

Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417-424.
Controversy surrounds the function of the anterior cingulate cortex. Recent discussions about its role in behavioural control have centred on three main issues: its involvement in motor control, its proposed role in cognition and its relationship with the arousal/drive state of the organism. I argue that the overlap of these three domains is key to distinguishing the anterior cingulate cortex from other frontal regions, placing it in a unique position to translate intentions to actions.

Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82, 171-177.
The idea that memory is composed of distinct systems has a long history but became a topic of experimental inquiry only after the middle of the 20th century. Beginning about 1980, evidence from normal subjects, amnesic patients, and experimental animals converged on the view that a fundamental distinction could be drawn between a kind of memory that is accessible to conscious recollection and another kind that is not. Subsequent work shifted thinking beyond dichotomies to a view, grounded in biology, that memory is composed of multiple separate systems supported, for example, by the hippocampus and related structures, the amygdala, the neostriatum, and the cerebellum. This article traces the development of these ideas and provides a current perspective on how these brain systems operate to support behavior.

Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195-231.
This article considers the role of the hippocampus in memory function. A central thesis is that work with rats, monkeys, and humans—which has sometimes seemed to proceed independently in 3 separate literatures—is now largely in agreement about the function of the hippocampus and related structures. A biological perspective is presented, which proposes multiple memory systems with different functions and distinct anatomical organizations. The hippocampus (together with anatomically related structures) is essential for a specific kind of memory, here termed declarative memory (similar terms include explicit and relational). Declarative memory is contrasted with a heterogeneous collection of nondeclarative (implicit) memory abilities that do not require the hippocampus (skills and habits, simple conditioning, and the phenomenon of priming). The hippo- campus is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.

Todd, R. M., Cunningham, W. A., Anderson, A. K., & Thompson, E. (2012). Affect-biased attention as emotion regulation. Trends in Cognitive Sciences, 16 (7), 365-372.
The affective biasing of attention is not typically considered to be a form of emotion regulation. In this article, we argue that ‘affect-biased attention’ – the predisposition to attend to certain categories of affectively salient stimuli over others – provides an important component of emotion regulation. Affect-biased attention regulates subsequent emotional responses by tuning one’s filters for initial attention and subsequent processing. By reviewing parallel research in the fields of emotion regulation and affect-biased attention, as well as clinical and developmental research on individual differences in attentional biases, we provide convergent evidence that habitual affective filtering processes, tuned and re-tuned over development and situation, modulate emotional responses to the world. Moreover, they do so in a manner that is proactive rather than reactive.

Woollett, K., Spiers, H. J., & Maguire, E. A. (2009). Talent in the taxi: a model system for exploring expertise. Philosophical Transactions of the Royal Society, 364, 1407-1416.
While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.







Follow us on Blog Facebook twitter linkedin You Tube

Copyright © 2012-2014 - Rushing to Yoga Foundation. All rights reserved.